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ABSTRACT

5 The collision and coalescence of drops are studied with emphasis on the

effects of electrostatic forces. A historical review is used to point out

j some of the earlier research in this field of study.

A mathematical model describing the effects of forces acting on two

spherical drops immersed in a viscous medium is described. The model

includes the interaction of the Lrops with an externally applied electric

field and with any charge present. The collision efficiencies between pairs

of drops ranging in size from 5 to 70 microns in radius are given as a

result of computing the grazing trajectories of the smaller droplets

relative to the larger drops. For a fixed droplet size, the collision

efficiency is found to increase as the drop size is increased. However,

applied electric fields produce increases in the collision efficiency for a

given pair of drops. For example a horizontal electric field of 3600 volts

per centimeter increases the collision efficiency of a 30 and 5 microns drop

pair by a factor of 34.5. A.lso for a given pair of drops with charges of the

same sign, the collision effici.ency decreases to zero as the charges increase

in a field-free region but increases in value when a vertically applied field

is present. When the charges on a given drop pair are of opposite sign,

the collision efficiency increases to values greater than unity as the charges

are increased in a fieid-free region but may decrease in value when a

vertically applied field is present.

The coalescence of a pRir of drops 2 millimeters in radius immersed in

air is investigated by first consid'ring a mathematical model which includes

the hydrodynamic flow of the air from betwecn the two approaching surfaces,

the effe:t of the flattening of the adjacent surfaces,and the effect of an

I



eleoctric potential between the drops. With this model the time required

for the surfanes to move a given distance is determined as a function of

the viscosity of the air, and the potential difference. High speed

photographs of the profile view of two colliding drops are used in

support of this model. The time interval between the initial deformation

of the approaching drops and their coalescence, the rate of growth of the

flatten deformation of the adjacent surfaces, and the collision velocity

of the drops are measured. It is found that the time for coalescence is

independent of moderate charges in the air pressure, varies inversely with

the potential difference, and decreases for aa increase in the collision

velocity. Also the time interval during which charge flows between the

drops before they actually coalesce is investigated.



CHAPTER I

IMMODUCTION

The collision of small particles with a .:olleetor is an important

problem in several areas of interest For example, this is the fundamental

mechanism by which dust and smoke are removed in many types of air clean-

ing equipment; it is the method by which water drops are collected on air-

craft wings and turbine blades resulting in icing; it produces wash-out

from the air of particulate matter from industrial pollution and atomic

explosion residues and it plays a role in the formation of clouds and in

the development of rain.

A particular problem which is -f grert intcrest is Cthe growth in the

size of liquid drops by the collision and coalescence of two particles

borne in a 'uid medium. V±scous forces arise from the fluid flow around

the particles. These viscous forces affect the trajectories of the particles,

and, therefore, the conditions under which the two particles collide.

Coalescence itself is a second stage of the process, since it is by no

means certain that two liquid drops will coalesce if they collide.

This aggregate process is of great irterest to cloud physicists to

help explain the rapid growth cf small cloud droplets into rain-size drops

which occurs in non-freezing clouds. Initially, water droplets are

formed by the condensation of moisture on small nuclei. The droplets grow

to about an average radvis of 6 microns and have approximately a Gaussian

size distribution (Weickmamn and aufm Kampe, 1953). However, warm clouds

have v'n average drop radius of 30 microns and Best (1951) showed that the

condensation process was too slow to preduce these larger drops. Also,

1



since the lower limit of raindrop radius is about 100 microns, the coalesce

process is necessary to explain the rapid production of rain size drops

frm these warm clouds. Findeisen (1939) was the first to calculate the

growth by the coalescence process of a drop falling through a given cloud

thickness. However, he did not accept his own calculations thinking they

wore unsubstantiated by observations. Other 4nvestigotors such as Moore

and Vonnegut (1900) have indicated that only by having high collection

efficiency of cloud droplets can ti.e rapid change in the droplet size

spectrum of warm clouds by explained.

Although it is recognized that the aggregation of water drops in-

volves the two independent stages of collision and coalescence, very few

eperiments are able to separate the two processes. The collision pro-

cess which is of initial importance in bringing the drops together has

been approached both from the theoretical and experimental point of view.

However, vc7 little is known about the coalescence process and only a

few experimental observatiors are available.

The investigation reported in the following pages has been separated

into two parts, i.e., the conditions leading to the collision of two

water drops and the parameters governing the coalescence of two water

surfaces immersed in air. It was of primary interest to determine the

influence of electrostatic forces due to either an externally applied

electric field or the presence of a net charge on either or both drops.

For convenience, all measurements of drop sizes in the rest of this report

have been given as the radius of the drops and the smaller of two drops

has been referred to as the "droplet". The collisions between drops and
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droplets were determined frox the computation of the trajectories of the

"droplets while subjected to gravitational, hydrodynamic, and electrostatic

forces. Collision efficiencies were determined from collisions in air

for water droplets ranging from 5 microns to 50 microns with a wida

range of net charges and applied electric fields.

The coalescence of two water surfaces was studied by taking high

speed photographs of two colliding drops suspended from two hypodermic

needles. From the profile view of the collision, measurements of the

time interval that the surfaces were in contact before coalescence

occurred were taken and the rate of growth of the resulting drop was

determined. The effects of an electric potential difference between the

drops, the collision velocity of the approaching drops, and the air pressure

of the environment on the coalsscence process were investigated. Also,

investigated was the time interval before coalescence, during which charge

flowed be'ween the approaching drops.

Rationalized mks units are used throughout the following chapters.

I:



CHAPTER II

HISTORICAL REVIEW

Setting up a well controlled experiment or postulating a working

model of the collision and coalescence of liquid drops immersed in a

VisCMu medium has proved to be very dififcult- Stokes as early as 1845

was interested in the motion of objects in a viscous medium. But even

up to the present time no completely general description has been determined

for two drops in proximity. However, a limited amount of both theoretical

and experimental work has been reported and most of the important work is

outlined in this chapter.

2.1 Theoretical Aspects of Computing Collision Efficiencies.

The first step in attempting a mathematical analysis of the problem

of possible collision between particles is to identify and to state the

process or processes of greatest importance and the physical laws on

which these depend. A complex assemblage of particles can be reduced to

only two particles irmersed in a fluid. This obviously ignores the

perturbing influence of all the other particles but is generally accepted

for most applications. Further physical simplifying assumptions are that

one particle is much larger tVan the other and that both particles are

s-Jýerical in shape. This particle is the collector and will be referred

to as the 'drop'. The smaller particle is the collected drop and will be

referred to as the 'droplet'. If care is exercised, large deformed drops

and irregular solid particles can be taken into account and the same

approach can still be used.
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When one particle is much larger than the other, the fluid flow

pattern is assumed to be characterized by the flow around the larger

Most workers have assumed that the droplet does not affect this flow

pattern; therefore, the determination of the flow pattern around the

drop is of great importance.

2.la Hydrodynamics

The Navier-Stokes equation which describes the flow for a viscous

fluid is non-linear and a general solution for the steady flow past a

fixed sphere has not been determined. It is assumed that the fl],id has

no slip on the surface of the sphere and a uniform flow at infinity.

Stokes (1851) was the first to consider this problem and obtained a

solution by ignoring the inertia force in the differential equation.

However, at a distance from the sphert where the uniform stream has been

reached, the inertia force and the viscous force become comparable in

magnitude and Stokes' solution is no longer valid. Whitehead (1889)

attempted to improve this solution by obtaining higher order approximations

of the flow. He used Stokes' solution to calculate the neglected inertia

terms by dev-loping an iterative procedure. However, the method failed

because it was not possible to match the resulting velocity with the

uniform stream at infinity.

Oseen (1910) assumed that the sphere caused a small perturbation in

the uniform parallel flow and neglected the second order perturbation

terms which took into account the inertia terms. The Oseen's equation

which resulted is a linear approximation of the Navier-Stokes equation.

But since the perturbation close to !he sphere becomes large, Oseen's
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solution is orly valid away from the sphere. Goldstein (1929) worked out

thQ exact analvticai solution of Oseen's linearized equation for the case

of steady low o.f an incompressible viscous fluid past a sphere.

Temot~ka and Aoi (1950) and Pearcey and McHugh (1955) used Goldstein's

solution to determine the flow pattern around a sphere for v ,ious

Reynolds numbers but did not improve the range of validity of the solution.

By assuming a special form for the solution of the flow pattern which

satisfied an integrated form of the Navier-Stokes equation, Kawaguti (1943)

was able to obtain a solution for the first and second order terms of the

equation. Although Kawaguti (1950) muade numerical corrections to his

previous work, nothing new was developed.

A new approach was used by Lagerstrom and Cole (1955) and Kaplun

and Lagerstrom (1957) which expanded the stream function into two

expanuioas An terms of the Reynolds number. One expansion was good in

tVe region close to the sphere and the other expansion was good for the

outer flow, These expansions were substituted into the Navier-Stokes

equation to yield thi neparate coefficients of the expansion since only

one set of physical boundary conditions was applicable to each expansion.

A unique solution was derived by employing a procedure which yielded a

higher order approzimation of the flow. Therefore, the linearized

Stokes analysis near the surface of the sphere 'was ombined with the

Oxeen analysis far from the siphere for small Reynoids numbers. Later

Proudman and Pearson (1951) extended Kaplun's method to obtain additional

terms for the stream function expansion.
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By employing a digital computer and using a relaxation method,

Jenson (1959) numerically determined the stream function about a fixed

sphere for Reynolds numbers of 5, 10, 20, and 40. This method gave

satisfactory results but was inconvenient to use since a large table

of values had to be generated.

Hocking (1959) determined the drag forces when there were two spheres

of comparable size present. Since he used the Stokes linearization of

the Navier-Stokes equation, his results were limited to Reynoids numbers

less than one. His calculations werB based on the superposition of two

solutions, one when the relative motion of the two spheres was along their

line of centers and one when it was at right angles to this lina of centers.

Since the solution for Stokes' ease is linzar, the superposition of these

two solutions did give the drag forces for an• relative motion netween

the two spheres for which the Stokes approxiLations apply. After the

fluid flow was determined around the drop, the viscous drag on a Jroplet

was taken to be directly proportional to the relative velocity of the

droplet in this fluid. Stokes deri..ed a simple law for caiculatirg the

drag for small spheres which was used for larger spl'eras after being

corrected by the use of a drag coefficient determined experimentally as

reported by Davies (1945)

2.lb Electrostatics

It is necessary to determine the electrostatic force on the two

drops if this force is to be considered. The easiert -a;e :c. hanule iF

that in which the drops can be considered aq conouctlng spheres. The

electrostatic force can be apprcximated when a uniform' elcctric f4.eld is
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applied by determining the inter-.-'an between induced dOpole' of spheres

as Cal'ilated by Smythe (1950). mythe Llso derived a mcre'ý accurate

expression for the lorce along the line of zenters of the two conductinig

sphe's in a timfor field. For the case of charges spheres with no

appliod field. the method of images can be -axed to compute the mut-Jial

foree action between the spheres, A mo-e thorough treatment of the

electrostatic protlem of two spheres was given by Buchbhlz (1957); how-

ever, the most thorough treatment to date was reported by Davis (1962).

Uavis determined the forces or, two conducting spheres, ctarged or un-

charge4, in an applied uniform e.eotric field with any oriontation.

2.1c. ,Nuations of MWtion

The equations of notion of the droplet can be written including the

various forces which are assamed to be acting on it such as gravitation,

viocous force caused by the fluid, and electrostatic force due to both

charge knd an applied electric field. These equations are non-linear

and must be solvnd norerically. Theref-rw, the numei-Acai technique

iuvarlabl, u.es a step-by-step solution of the individual trajectories

of the swll drop3et. The trajectory is usually devermiusd for given

initial ctiati1 ionr where the droplet is - grea; distance from the drop

and is a distance y froam the linL through the centee of the drop and

parallel to the relative fluid flow. 3ach trajectory either hits or misses

the larger aphere and v:he value ycP which corresponds to a grazing trajectory

with the drop Is found by a trial-and-error. The collision cross-soction ,r

the collision efi•iclncy 3_ is the determined as y/(6., + a ):, where a"£ I

i4 the radius of the drop and a is the radius of the droplet. The main
o

objective of t.his type of computation is to ,.veluate Funder various conditions•f
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2.1d Collision Efficiencies

Many investigators have attempted vc determine the collision efficiency

between two drops and ach have made different assuptions in order to

cGbtain a solution. Sell (1931) *ssuwod ideAl fluid flow around the drop

but apparently negloctcd any gravitatio•t-l or leztrostatic forces. He

did not give any details about the ,alculation; therefore, his work is

mainly of historical interest.

Langmuir and Blodgett. (1944-194-1 evaluated !he collision efficiency

of two falling drops by assuming only a drag force on the droplet caused

by an idea] fluid flow around the drop which is only valid for a very

large collector drop. The droplet was take,, as a point mass and a

diffe-ential nnqlyzer was used tc calculate the trajectories. Later

Langmuiz (1948) evaluated a similar efflciency for smaller collector

drops by assuming a StoKes flow pattern &rcund tbe drop. From these two

soiutiona, Laqg-nuir made a guess as to tVe collis1on efficiency for

intermediate sizes of drops. His work has been shown eo be in fair

agr~eement with experimeutal results. Das (1950) computed the droplet

trajectories using the approximation of an ideal fluid flow but, unlike

Langmuir, todk into aecount the sj',e of thb droplet. No details were

given about his method of computing the trajectories and the results

were given only graphically. Ludlmu (1951) made rough corrections to

Langmuir's calculated collision efficiencies by assuming that the path

of the center ot n droplet &f finite radius a would be that celculated

by Langmuir. but displaced by a distance a s. An electrostatic force was

added to this model by hanz (1959) who incluled the interaction of the

induced dipole of each drop in the presence of a uniform electric field.



Parcey and Hill (1957) have given a treatment using Oseen's approxi-

mation for the flow around the drop aDd taking into account the effect of

the droplet motion on the larger sl'here by superposing the individual

flow patterns. This is obviously not satisfactory when the two drops

are in proximity since the system is non-linear. The equations of motion

were solved by a digital computer and were extended up to a Reynolds

number of 40. Within the frmework of the assumptions, the results were

accurate and there was no interpolation between the extreme cases as in

the case of Langauirts results.

Rocking employed the dr*'g force he had determined for two spheres

of comparable size and in the Stokes range. He evaluated the collision

efficiency for drops ot acout 30 microus to which the Stokes linearization

was applicable. The most important point which emerged from this calcu-

lation was the fact that w:.en the drop had a radius of 18 microns or less

its collision efficiency was zero for all smaller droplets. This radius

was much greater than the cut-off value of about 6 microns found by

Pearcey and Hill.

Saktor (1960) indicated that he used Hocking's drag forces and an

expression for the induced electrostatic force between the drops cesulting

from an applied uniform electric field. No details were given as to

how he actually set up his equations of motion, but r digital computer

was used to determine a limited number of collision efficiencies for

normally non-colliding droplets when a uniform field was present.

Lindblad and Semonin (1963) computed collision efficiencies using

Proudman and Pearson's (1956) results for the fluid flow pattern around

the drop with both an electrostatic force due to the induced dipole
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caused by an applied electric field, and a force due to gravity. They used

3 a digital computer to determine the =ollision efficiency of drops in the

range of 30 to 50 microns and for fields up to 3600 volts per centimeter.

3 Calculations show that collision efficiencies rAy be increased as much as

240) per cent in horirdntal fields of 3630 volts per centimeter when only

the- dipole interaction was included.

Shafrir and Neiburger (1963) used a modification of the relaxation

method, first used by Jenson, to determine the fluid flow pattern around

each isolated drop. The interaction between the flow patterns was approxi-

mated by superimposing the two separate flow patterns around each drop even

though the flow patterns were solutions of a nen-linear differential

equation. The force due to gravity was also Included and the collision

efficiencies of drops up to 136 microns were determined by the use of a

digital computer. Hocking t s work was used as a standard and Shafrir and

Neiberger': work proved to compare favorably in the over-laping range. No

consideration was given to the effects of any electrostatic force.

2.2 Experimental Collision Efficiencies

Experiments to investigate the collision-coalescence process are of

two types. The first type of e7periments are performed on actual cloud

droplets and the results are immediately applicable to natural clouds.

Because of the very small size of cloud droplets and the rather high

terminal velocity of larger drops, these :--eriments are difficult to

perform. The second type of experiment is designed to overcome these

difficulties by using a modeling technique whereby cloud drcplets ar"

simulated by drops of macroscopic size moving through a liquid. But

these result. are only a qualitative interest since tbe modeling of

I
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cloud droplet* falling in air, holds only for uniform, unaccelerated

motion. This failure of the modeling technique is a rel 'At of the fact

Fthat in air :ost of the kinetic energy of motion is associated with the

droplet, while in a liquid environment, because of its greater density,•

much of the kinetic energy is carried by the medium surrounding the drops.

2.2a Cloud Size Droplets

Findeisen (1932) observed that the drop size of a fog in an enclosed

space increased and he interpreted this as evidence of the collision and

coalescence of the droplets. But this observation could have also re-

sulted from an evaporation-condensation process. Observations of small

fog droplets using a microscope were reported by Dady (1947) and Swinbank

(1947) who o"served many collisions without coalescences between droplets

of radius 2 microns.

Gwum and Hitachfold (1951) investigated the collection efficiency of

1.5 millimeter drops falling through a cloud of smaller droplets of

6-100 microns. They weighed the drops before and after passage through a

3 meter column of uniform cloud droplets. The experimental result8 were

in agreement with those computed by using the theory of Langmuir and

indicated that the assumption that coalescence always occurs for each

coi:ll-ion was valid. No effect was found when the collector drop was

-10
charged to + .67 x 10 coulombs and it was concluded that charging was

therefore unimportant as far as the later stages of growth of raindrops

was concerned.

A study of the coalescence of water droplets of approximately equal

size was made by Telford, Thorndike, and Bowen (1955). A uniform cloud
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of droplets approximately 75 wicrons in radius was produced by a spinning

disk. These droplets were injected into a vertical wind tunnel where the

speed of the air was adjusted such that all droplets moved slowly upward

through the field of view. Any larger drops formed by coalescence of

two cloud droplets then moved down through the field of view and were

recorded photographically by using a film moving at right angles to the

direction of travel of the droplets. The experiment indicated an un-

expectedly high collision efficiency, E = 12.6 + 3.4, and was explainedc

qualitatively on the basis of capture of the upper droplet by the wake of

the lower. Pearcey and Hill (1957) gave a value of E = 12.6 for dropletsc

of radius 80 microns which is in agreement with the experimental results.

The agreement also indicates that the assumption of a coalescence for

every collision is substantially valid. The experiment was also arranged

such that all drops were charged and the droplets could either all be

charged with the same sign or an equal number having an opposite charge.

It was found that unlike charges of the order of 2 x 10-13 coulombs per

65 micron drops increased the coagulation rate by a factor from 2 to 20

depending upon the droplet concentration. However when all droplets were

charged with the same charge, coalescence appeared to be completely

inhibited. A sv very likely that most of these effects were caused

by the changes in the collision efficiency but it was possible that the

coalescence process also coul'. have been altered.

By tracing the growth of single drops as they fell through a

dense fog, Kinzer and Cobb (1958) obtained the collision efficiencies

for a wide range ot collector drop sizes. A dense uniform fog with
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drepwets of 5.5 to 8 microis was tormed in a vertical wind-tunnel and the

growth of a single drop was observed by mseans of a mitroscope. The drop

was kept statiorwy by adjusting the air speed through the wind-tunnel.

The collection efficiency of this growing drop was found to decrease

steadily to less than 0.2 for drops between 20 and 40 microns. The

collection efficiency then rose to nearly unity for 200 micron drops and

fell again to small values for drops greater than 1000 microns. The

collection efficiency for drops greater than 20 microns was roughly in

agreement with the calculations of Langmuir. For drops less than 20

microns th experimental procedure was difficult, and humidity and

temperature were carefully controlled to avoid size change due to

evaporation-condensation. The case in which both the collector drop

and the cloud droplets were charged was investigated. It was concluded

that little effect on the collision efficiency was found for drops

greater than 8 microns in radius, although there were some indications

that drops did coalesce spontaneously when they came within 2 or 3

microns of each other.

2.2b Scaled Model Droplets

The basic faults of the model experiments have already been pointed

out. However, Sartor (1954) constiructed a model consisting of water drops

a few millimeters in diameter falling through mineral oil. Mauy of the

effects discussed in this chapter were observed, such as the pushing aside

of small droplets and the effect of drop wake, but no coalescence was observed

despite many collisions. This failure to observe coalescence seems to

Indicate the ditference in structure of the oil-water interface and

illustrates a fault of this modeling technique when compared to water
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droplets in air. However, when an electric field was applied vertichlly

in the tank, coalescences occurred. There was negligible effect on the

droplet trajectories if the fields were less than 200 volts per centimeter,

but the coalescence efficiency on collision rose from zero to 104 percent

as the applird field was varied from zero to about 240 volts per centi-

I meter, the variation being approximately linear. No calcu]ation of the

relationship of the field strengths in this model to those in a cloud

situation was given.

A model using steel balls falling through a concenitrated sugar

solution was employed by Schotland and Kaplun (1956). After Schotland

(1957) made some corrections in the results, the collision efficiencies

were found to follow the pattern calculated by Pearcey and Hill with the

I exception that the overall values were higher and there was apparently

J }no cut-off for small drops,

2,3 Coalescence Experiments

Rayleigh41845) was one of the first investigators to report the

significance of the coalescence of liquid drops. He explained the

dispersion of drops from a jet of liquid shooting up into the air as

the result of dropq bouncing from each other. When the drops were

charged properly, the jet was made to collapse back on itself with very

little dispersion. This observation was explained by the increase in the

coalescence of the colliding drops with charge. Since that time many

investigators have been interested in learning more about the process

which leads to the coalescence of two liquid surfaces.

Observations of water drops bouncing across the surface of pure:

water were reported by Revnoldz (1891) Howevcr, hc al÷ obsezrvvd that

9
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if the surface of the water was dirty any drops failing on the surface

would coalesce immediately. He concluded thaz aay icim on the water I
reduced the surface tension and enhanced the c~cl-scence. It is gýoerally

accepted that the definiti-a of the sraii~ly of a liquid drop is tne time

the drop is in proximity of a socoad liqui. surf .oe before c%ýalescence

Razelburat and Neville (19337 fo-und that d>rps of certain liquids,

falling from a limited height onto a liquid surface, do not immediately

coalesce with the body of the liquid, but may roll or remain at rest

,ipon the surface for a short time. However, non-polar or molecular

structures which have a low moment of !nertia have a short rotation time

and are less strongly oriented resulting iv a short time for coalescence.

"-xaiples in this category are water, electroly-tes, formic acid, formaldi-

hydes and ethylene glycol. Hazelhurst and Neville concluded that the

character and stability of the oriented surface film was the determining

factor for coalescenze.

By using interference patter-3, Derjaguin and Kusaakov (1939) measured

the distance between a flat plane and an approaching bubble and discovered

that not only did the bubble flatten at a finite distance from the plane

but that a dimple formed in the middle of this def)rmation. Their findings

also supported the theory that hydrodynamics of the air film trapped

between the surfaces determined the coalegcence properties of the system.

Elton (1948) included the effect of an electrostatic force on the viscosity

of the trapped air film in attempting to improve the theory of this system.

The ratea of coalescence of oil drops in wa-er and water drops in oil

hrve been meQaured in the presence of various chtrmlcal agents by Coikbiin
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and McRoberts (1953). It was concluded that the main factor determining

stability in all the systems examined was the resistance to wetting of

segments of the absorbed film by the discontinuouc phase.

Gillespie and Ridial (1955) alsc -tud`.ed the stability of drops at

an oil-water interface. An analysis of their results indicated that a

film was formed between the drop and the interface which drained unevenly.

Rupture of the film leading to coalescence was found to be a statistical

process and very dependent on any temperature gradient in the system.

The thickness of the air gap separating the colliding surfaces was

again measured by the use of light interference patterns by Prokhorov

(1954). He varied the humidity of the air around the liquid suirfaces

and found that for volatile liquids, if the humidity approached zero per

cent, the liquid surfaces would remain separated without coalescence for

long periods of time. However, for 100 per cent humidity the surfaces

would coalesce very rapidly. He concluded that the outflow of the vapor

from the liquid surfaces created a hydrostatic pressure which kept the

surfaces from moving together. He also verified that a dimple does form

at the center of the deformed surfaces.

Liquid drops floating on a surface of the same liquid were studied

by Linton and Sutherland (1956). They found that the time for coalescence

of the drops with the bulk liquid was proportional to the diameter of the

drop and the time for coalescence of the dr,'ps with other drops was pro-

portional to the cube of the aiamnvter of the smaller drop. It was also

concluded that drops larger than 0.05 centimeters would bounce while drops

less than 0.025 centimeters would coalesce.
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The coalescence of water resting on an, oil-water interface was

stvdied by Elton and Ptcknett (1957) where the temperature and contamina-

tion was carefully controlled. Their results ýtported the theory that

the drainage of the liquid trapped between he drop and the interface

controls the time for coalescence. However, they concluded that an

electrical double layer force was important in forcing the trapped

liquid out between the approaching surfaces.

The rate of coalascence of oil globules in water was studed by Van den

Tempel (1957). He found that the thickness of the water film between the

oil surfaces at the moment before coalescence decreased with an increase

in electrolyte concentration. He postulated that an additional repulsive

force was present in the system other than electrostatic repulsion and

van der Waals-London attraction.

Nielsen, Wall, and Adamt k4958) found from oil-water interfaces that

water drops are more stable if an oil soluble agent was added and oil

drops were more stable if a water soluble agent was added. Both types of

drops were less stable with an increase in temperature and it was con-

eluded that any factor which disturbed the oil-water interface on a

molecular scale decreased the stability of the drops.

By sýtudying drop coalescence with a flat surface of the same

liquid, Charles and Mason (1960) also found that the stability of the

drops increased with a decrease in the temperature. However, tht

stability was found to decrease with an applied electrostatic iield.

They also studied the formation of small drops when large drops fell on

a surface of tbe liquid. It was concluded that a cAumn of liquid was

rjni•-rted u, lint-, the air and was split into *vuall secondary droplets.

'rThZ phenomena was called partial coalescence.
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The stability of drops which were Influenced by a concentration oi

a solute was studied by Groothuis and Zuiderwig (1960). After the solute

was added to the drops, the surface tensi<n was decreased when the solute

was diffused to the continuous phase. But when the solute was added to

the continuous medium, the solute diffused to the drvps,increased the

surface tension, and decreased the coalescence.

The coalescence of two water drops in air was studied by Freir (1960).

He formed a stream of uniform drops which interacted with each other to

cause collisions and a few coalescences. The greatest increase in

coalescence resulted when an applied electric field was oriented in the

direction of motion of the colliding drops.

Berg, Fernish, and Gaukler (1963) photographed two liquid drops

presred together. The time for coalescence was found to decrease with

an increase in an electric potential applied between the drops. They

concluded that the coalescence was effected by the formation of bonds

across the interface between the drops,



ThRORZTICAL MODEL FOR DTFYERMINING COLLISION EPPICIENCIES

3.1 Definition of Collision.Effieienc

The collision efficiency is a measure of the cross-sectional area

relative to the collector drop of radius af such that if a collected

droplet of radius a passes through this area the two drops will collide.5

Conversely, if the droplet does not pass through this area, then the two

drops will not collide. In order to determine this cross-sectional area,

the trajactory of the droplet must be determined such that it just grazes

the collector drop. If the two drops are initially traveling in the

vertical direction and if the initial horilontal separation of the grazing

trajectory is called Y on one side and -Y' on the other side, the mostC

useful definition of the collision efficienco E is
c

fl(Y + Y')2
E c C. 2 (3-1)

4T 4(a t + as)2

Although other authors have used differ'ntt defin~tions for K , thisC

definition is consistent with othar areas of physics and it also takes

into acccunt any non-symmetrical cases as shown in Figure 3-i.

If the origin of the coordinate system is selected at the center of

the collector drop, then the etquattcn of mctlon for the droplet can be

written as

V =-F+ +1 +F (3-2)

where a is the mass of the droplet, v is the velocity of the droplet,
S t

Fh is the hydrodynaamic force on ttae dr-oplet -:acsed by the viscous ,ieditui,
h[
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Fi1s electrostatic force on the droplet caused by Afl7 tleCtrlr. obare

or field present, and F Is the gravitational force. By slving theg

*rqation of aotion the trajectory of the droplet can be determined.

For this investigation, seven trajectorier were obtained for a

pair of drops to deteraine the collision efftciency. These trajectories

were selected in the following manime. For the first trajectory the

horizontal searation was always y, a= . Then, if the first trajectory

resulted in a collision with the coliector drop the computer selected

Y2 =y Y+ 1/2 a, and for a utass Y2 = Y1 - 1/2 •, so in general we have

Fk y + (1/2)ka . The grazing trajectory was then defined as

Yc - Y7 + (1/2)~ 7 ,

The net step was to determine the three forces which acted on the

droplet. Care had to be exercised in formulating both the hydrodynamic

and electrostatic problems since these would limit the results.

3.2 ydrod ICS

The problem of two spheres waa simplified by assming that the fluid

containing the droplet was flowing around a stationary drop. Also, if

the ratio of the droplet radius to the drop radius was small, the mutual

interaction of the flow patterns set up by the two spheres could be

neglected. Hocking (1959) estimated that the ratio should be approximately

one-tenth. However, by comparing the collision effýciencies of the present

work with Hocking's and with Shafrir and Welbu•gers' (1963) as in Figure

3-2, it was indicated that the ratio of one-tenth was more conservative

than necessary. Lindblad and Semonin (1963b) also discussed the limitation

of the ratio of the drop radius and came to tCie same conclusion.
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The flow of a fl-,id around a single sphere was determined by solving 24

the Navier-Stokes eq itions which may be written in vector form 1

4- + 7(i U2 - ixvxul VP - V(VXVXa - V 5) (3-3)P ~t )"2= "

where u is the velocity of the fluid, pA is the density of the fluid and
Ai

v is the viscosity of the fluid. If the viscous force which is pro-

portional to the first power of the velocity is considerably greater than

the inert.ia force which is proportional to the second power of the velocity,

then the inertia term can be omitted from the equations of motion of the

fluid. The resulting equations are good for Reynolds numbers, R e < 1e

and written as

PA a = _VF + vV25 (3-4)

The equations (3-4) are referred to as Stokes' equations. For slow

streaming past a fixed obstacle, the error involved in this approximation

is greatest in the distant parts of the flow field where the inertia

force is comparable to the viscous force.

An improvement of Stokes' solution was given by Oseen (1910), who

took the inertia term in the Navier-Stokes equations partly into account.

He rssumed the velocity components could be represented as the sum of a

constant and a perturbation term. Thus

U = U + ,' (3-5)
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where u * represented the perturbation terms, and as such, was small with

respect to the free stream velocity, u= , whtir was a constant. The

Navier-Stokes equations for R < 1 can now be reduced to the approximatee

form

-0

3 -1 + (VV.+ VV (3-6)
PAL + • -Vp + 6t 2 u'

which give a second order approximation to the outer flow and are called

Oseen's equations. For slow streaming past a fixed obstacle the error

involved in this approximation is greatest in the near parts of the flow

field where the variations from the uniform flow field are greatest.

For steady state flow 0, which eliminates this term from the

equation. When the obstacle is a sphere, the spherical polar coordinates,

r, 0, X, are the most convenient coordinates to use with the axis 0 = 0

chosen to lie in the direction of the free stream velocity t6 - If

there is no fluid rotation about the 9 = 0 axis which is normally the

case, then the velocity function for this flu4.d is independent of k.

Now the velocity vector can be transformed into a Stokes stream function,

* , where the velocity components are given in terms of * as

u 41 a 1 -- uA .(3-7)
r r2 2c ' r(l - C 2 )1/2 ýr

wherc c= cosO. For the case of a fixed sphere, 4 must be such that the

velocity is zero on the surfare of the sphere r a, and the velocity is

ut at infinity.



Otokgs equations nm can be reduced to 
26 J

D * (3-8)

where 
A: -0 

(3-9)

2 2 2 2
br2 52 cc2

Equation (3-8) yields a solution

u2 i26 2

2 &2 2& 2r

and equation (3-9) yUelds a solution

3vuw e
p a -O 2 Cos (3-11) i

2r 2

By using the stream tunction, Osen's equation (3-6) reduces to

2 4
+ I Dý*(3-12)

5C~ 2 ap p

where

2 2 2

D p 2 P2 - c2

and gives a solution

"U 2 (1 + .R-)(0 +c)K(-C a)(; 16''
{l .z-'(•= (e r- " (3-13)

However, both solutions are good only in separate regions of the flow field

and only when the Reynolds number is small,
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Kaplun and his associates (Lagerstrom and Cole, 1955; Kaplun and

Lagerstrom, 1957; Kaplun, 1957: and Proudman and Pearson 1957) used a

clevrr approach to determine the viscous flow around a sphere for a small

Reynolds number. They distinguished between the inner flow in the region

near the sphere, where the normalized Stokes variable, r (= r/a), is

0(1), and the outer flow when the Oseen variable, p (= R r), is 0(1).

If the radius, a, of the sphere is used as the representative length,

the Stokes variable, r, is equal to r/a and the Reynolds number is

equal to 2 PAau/. where V is the viscosity of the medium. The outer

flow is represented by expressions for the velocity and pressure in the

forms

e 6

n=O
(3-14)

2 n nPAur n-O

where the En are functions of Re such that c0 = I and En+l /n 0 as

R -O The inner flow is similarly represented by0

'U1- = Yen hn( 0r

n-0

(3-15)

R (P - p.)
2 r n(r)

PA UQO n-O
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The equations satisfied by in* p and hn, r are obtained by inserting the j
a n n n

expansions (3-14) and (3-15) into the Navier-Stokes equations, written in

terms of the Oseen and Stokes variables respectively, and solving for

the values of the co6fficients. The velocity functions must satisfy -

the boun-dary conditions .- O0 (n > 1) as r-" a, and h = 0 on the body,

but the inner conditions on f and the outer one on _h are still te be
n n

determined. This is done by matching the inner and outer expressions. Z7

The Stokes stream function, 4, may be expressed as an Oseen expansion

m Ž 6) (3-16)

I-in the outer flow, and by a Stokes expansion .

U a n-0

in the inner flow.

Since a 1, it follows that

t s p 2 (1-c 2 ) (3-18)

because the leading term must represent the undisturbed stream. The

matching condition requires that

12 r as r -4 (3-19)

and has no-slip at r = 1. However, the Stokes solution does satisfy these

conditions and is

1 2 + 1 ) 2
'o a -(2r - 3r + r)(1-c2) (3-20)

[
I
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By substituting the expansion for ýt into the Navier-Stokes equation

written in terms of the Oseen variable, R H r, the term involvinge1

shows that t satisfies Oseen's equation

2 c • -c

(D 2 c 1 2 )D 2 0 (3-21)
p 7~p. -2 p c 1

This equation is solved by substituting

D2 • - exp(,-c) f(p) g(c) (3-22)

The solution that gives a vanishing velocity as p - • and will match the

Stokes expansion is

S -3(1+0J(I - ex P0-C)} (3-23)

By substituting the Stokes expansion into the Navier-Stokes equ.!ation

the second term, I ., in the expansion will satisfy the inhomogeneous

Stokes equation.

D4 -9 (2 _ 3 + 2.)) (-)(3-24)
r 1 8 r2  r3  r5'

In order for T' to satisfy the no-slip condition on the sphere and match

the Oseen's expansion as r

•1 = e

2 (2\
3r-1) (-a (2 + ( c2 + + (3-25)

I64 L r) r
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The third term, e2 Y., can be found as follows. If e2 = R 2 Jn(R ),

it is found that T2 must satisfy

D4 Y - 0 (3-26)
r 2

and has tfie fo~rm k± . The value of k is found to be 9/40; therefore,

160 (2r 2 - 3r'+-7 - c2( c (3-27)
2 10r

But it is found that there is no term of R 2 Ln(R ) in the Oseen eflansionC 0

and T2 is a valid repreaentation of the third term of the Stokes expansion.

The first two terms of the Stokes expansion as given by Proudman and

Pearson (1957) may be written in the unnormalized system as

W uua2 ,r .) 2 2 Re a
U-a _4 ý7_

(3-28)
3 Re a 2

for sufficiently small values of R e Now the two velocity terms can be0

written as

2e a 2

aUt~ Grg(3cos 1)(2 + -;+ -) - 2 coseO(I + -) (2 +-

(3-29)

U sine a 3Re a a)2  3Re°S0 o, a2a3

(3-30)

These equations describe an approximation for the fluid flow around a

single sphere in a uniform fluid flow when R < 4.e

3.3 ElectrostatIcs

If water drops are considered to be conducting spheres the derivation

of the elect-ostitic- forces acting on them will be simplified. Since the
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drops to be considered are small and travel at moderate velocities, the

assumption of the drops being spheres wi- introduce only a small error

in the results. From the equation of continuity of charge, V-J + -- f 0,

where J is the current density and pW is the charge density in the water,

the relaxation time of the charge distribution in water can be derived

in the following manner. Since J = a E where a is the conducti af

water, then the continuity equation reduces to aV'.E + ý-- 0.

But V - E = pW/E where ', permittivity of water, therefore

SPW! + CPW/a t = 0. The charge density is proportional to exp (- at!f)

where the time constant, C/U, is the relaxation time of the material.

For distilled water, the relaxation time is of the order of one micro-

second. The charge density, thus the electric field intensity within

the drop, decreases zapialy to zero with increasing time. This expresses

the well known fact that the field within a conductor is zero and

justifies the assumption that water can be considered as a conducting

material.

The electrostatic force acting on two spheres is determined by

solving for the charge distributions yL andas on surfaces of the two

spheres of radius a and a,. Given these two charge distributions,

the force is found by integrating the electrical stresses, c ' 2 /2

ndu2/2f , over the surfaces of the separate spheres. Smythe (1950)

gives an expression for the force along the line of centers between two

equal uncharged spheres in a uniform field. However, Davis (1962)

solved the more general problem required for the present application by

using the bisprerlcal coordinate system.
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Morse and Feshback (1953) give a detailed description of the ' 3
bispherical coordinate system which is useful in solving boundary-value

problems involving two spheres. The three coordinates of this system-,

4, 11, and X are illustrated in Figure (3-3). Constant 1 surfaces are

spheres of radius a csc-hul centered at z = a coth4 on the =-axis. The

two poles on the z-axis at 4 + a and the central plane z = 0 is the

surface 4 = 0. The surface 1, = fo is a fourth-order surface formed by

rotating about the z-axis that part of the circle, in the x-z plane,

of radius a cse T1 with center at z = 0, x = a cot 1o". Those for

S< 1/2yt have "dimples" at each pole; those for 11 > 1/21t have sharp

points there. These bispherical coordinates are related to the Cartesian

coordinates by

A sin (331)cosh P - cos T3

A sin T cos X
cosh - cos -)

A sin T sin X (
Y cosh - CO(3-33)

Since two spheres can be represented by the surfaces I L I and

4= -4L ,it is necessary to relate ýL , s ,and A to the radii, a ,

a . and to the separation of the spheres, r. Such a relationships

is given by

I- n(c + A) - In A (3-34)

4 In(c + A) - In A (3-35)
S S

I
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Figure 3-3 Illustration of the bispherical coordinate system.



where

1/2 1/22 22 2
A -(C a2 (c a) (3-36)1

c a (r2 + 2 )/2r (3-37) -e• r2 + a2- as i/2

~2 2 2 33).
c r (r+ a2 _ 2)/2r (3-38)

£M

Tiw charge distributions on the spheres are not found directly,

but by using properties of a Green's function as described by Jackson

(1962), the sur-ftce charge density is related to the electric potential

function by I

sp er, G(L)d(area) + J G(s)d(area) (3-39)
4e spzere sphere eLs !

where G(I) and G(s) are the Green's functions for spheres a, and a

respectively. Now the problem has been changed to solving Laplace's

equation for the electric potential function of two insulated conducting

spheres, uncharged or carrying specified charges, in the presence of an • j
external uniform electric field. The surface charge distribution is

determined from this potential function which then allows the computation } I
of the forces acting on the spheres.

Laplace's equation written in bispherical coordinates is given by

2 -- i ~ hx 2
-L h2• s + -2--- (3-40)

h sin2I • .l 2 -
whr

where :1

!
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*j A

coSh k- Cos l
(3-41)

A sin
Scosh ý - cos

The appropriate form for the solution of the laplace equation for two

conducting spheres in a uniform electric field, E, is given by

- -E z cosw - E x sinw + E(coshji - cos,)1/12

~oBW ~ expt (ni-jXLJ + B~ exp[-(nJf&'ý P (coal1) (3-42)

n 0

+coCa sinwi~{ exPL(rl44!)1 + Ii exp[-(niw)p" P

n-1

where w is the angle the field makes with the line of centers of the

spheres.

Knowing the form of 0, the following expansions are assumed:

05

aj(jX) eE(coshJl~k o 3/2F 8s Y P (cosfl)

n-O (3-43)

+ cos sinw P I(cos)

n- 1

C,

oa(TX) - e E(coshl•s± 3/2 cosw P YnPn(coS)

00 n-0 (3-44)

+ cosX sinw z P I(cosfl)¶
n-I

By using Eq. (3-40) the coefficients of equations (3--43) and (3-44)

can be related to the coefficients of the potential function Eq. (3-42)

as follows:
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-- B 2 ex2l 0.+1/24.ps]

(3-45)

W a G ,(- x[(+/)

Z i A H n exp[(nsi/2)PvJ

The task now is to evaluate the coefficients in the expansion for

0. Solutions for the electric field in the z-direction and in the x-

direction can be treated separately and superposed to obtain the solution

for the field in an arbitrary direction.

The influence of the electric field applied in the z-direction is

found in several steps. First, the boundary value problem of two

grounded spheres in a uniform electric field oriented along the z-axis

is solved. The total induced charges on these two grounded spheres are

determined along with the coefficients of induction for this two-sphere

system. This will relate the charges on the spheres to their corresponding

potentials. Now a second boundary value problem of two insulated spheres

which are held at arbitrary potentials but with no applied electric field

must be solved. By assuming a charge for each sphere which will cancel

the induced charge for the grounded sphere cave (plus any net charge

assumed for each sphere) and by using the coefficients of induction, the

potentials for the case of two insulated spheres can be determined such

that the super-position of the two potential functions will leave a zero

net charge :n each sphere. The resulting potential function will be that

of two uncharged spheres in a uniform electric field directed along the z-axi,
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The solution for the influence of the electric field in the x-direction

is relatively easy to obtain. Since no charge is induced on the spheres

when they are grounded, only the boundary value problem of two grounded

spheres in a uniform electric field oriented along the x-axis need be

solved.

Now the sum of the contribution due to the z-and x-components of the

field will give the complete potential function for the arbitrarily

oriented electric field.

The coefficients of the surface charge densities are now determined

and the net force on each sphere found by integrating the surface

electrical stresses1 , a2/2c and aB 2/2 t, over each sphere. The z-

and x-components of the force acting on the small sphere are given by

F~ 1~ 2pxre cose d(area) (3-46)

F 2 Us sin6 d(area) (3-47)x 2c sphere 8 sndar)
(s)

The components of the force acting on small sphere are

F -\exp[(2n+l)ii ý(2n-4-)S -(n+I)[exp(2ýL )+l-IS
ze 2 ý ]SL 11 n 5 nl)

n-0 (3-48)
CO

sE2 in 2 w L exp[ (2n+I)4s]n(r+Il)T n'(2n+I)T - (n+2)[exp(2;is)+l]Tn 1 S
nmO

cc

Fie - E sinu~exp(2ji )-I] • (n+l) exp((2n+l)4s]

(3-49)

{nS .T - (n+2)-S T
nli n n n+IJ
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where

co sw{(2n+){exp/ 227+1);!,, ) - (i/A).exp[ (2n+-)4j] + (!A)

exp• (2n+1)Lo- 1

eT (2n+()3-51 -
Tn expr[(2n+1)i] - I(3-51)

The pot-entials of each sphere due to both the induced charges Q- and

Qa and the not charges, q and q., are

o- Ptt(qt - K E cosw Q.) + Pls(qa - K E cosw Q.) (3-52)

0 a P S(qi - K E cow Qd) + Pss(qs - K E cosw Q.) (3-53)

The coefficients of induction are

P I /(C C - C s (3-54)

PIs " P 8 -C si(ci/css C Cs2) (3-55)

Pas " C t /(C t$cas " CIS2) (3-56)

where the coefficients of capacitance i-re

; K' eML (2tt+1)
C1 TL exp[ (2n+-)o 1" (3-57)

Goj

CL Sf A exP[(2n+-)I. ] i 1 (3-58)

Knu0 exp[ (2 _•l.)po,.

C s "! expL(2n+L)Ito] (3-59)
as exp[(2n+l)p.0] 1

The induced charge is

4

,, . - - . - _- .. . . . -
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expr (2n-+l)w. 5 + I

OD exp[ (2n+l)u] + 1

- K --- - (3-61)

Q -K (2n+I) exp[ (2+) - I
n-0

where

2

and

Po I + p a

3.4 Equations of Motion

Now the various forces acting of the droplet can be determined.

Since the negative x-axis is selected as the direction of vertical fall,

the gravitational force, m g, acts on the droplet in the negative x-s

directioD as shown in Fig. 3-4.

The interaction of the viscous fluid, which flows around the drop,

and the droplet can be expressed by the use of the well known Stokes

equation for the drag of a sphere

F -6T v a "D -; ) (3-62)

where V is the viscosity of fluid, u is the velocity of the viscous

fluid around the drop, v is the velocity of the droplet relative to thes

drop and D is the drag coefficient which has a value of itnity for dropss

which are in the Stokes range.

The equations of motion including electrical forces are
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Figure 3-4 Motion of a droplet Ii: rn electric f~ield, E, relative to a
fixed drop.
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dv-- As - - 6T "ý a D(Vs t; tlg+F(-3

S dt S - )s X + xe

dv
m Y - 6TT V a D)(v - Uy) + F (3-64)

Sdt yS y ye

dx_I. (3-65)
dt xs

-- - v (3-66)
dt vs

These equations of motion were solved on the IBM 7094 digital computer

at the University of Illinois. A numerical integrating routine first

described by Nordsieck (1962) was used. The routine incorporated auto-

matic starting, automatic selection, and revision of the integration step.

To start the integration, only the initial conditions and a logical

elementary interval are necessary. At small distances from the drop,

the interval is automatically shortened to obtain an accurate solution.

Whet, a smaller integration step is used that is necessary, excessive time

is spent ty the computer in developing a more accurate solution than is

needed. Thus the routine gives a solution of a given accuracy in the

least amount of time.

The initial velocities of the drop and droplet were determined by

computing the terminal velocity of each when gravity acts on the mass

and an elqttrlc field acts on any net charge. Since the center of the

drop is assumed as the origin of a fixed coordinate system the initial

velocity of the droplet is the difference between the terminal velocity

of the two drops. The initial separation was 100 drop radii. At this

separation, there is very little interaction between the disturbed fluid
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around the drop and the droplet or between the net charges which may

reside on either drop. The initial horizontal separation was one drop

radius.

-4'.

r

i



CH2APTER IV

EFFECTS OF ELEC7ROSTATIC FORCES ON 71HE COLLISION EFFICIENCY OF

A PAIH OF DROPS

4 1 Without Electrostatic Forces

There are many possible combinations of droplet sizes. net charges.

and applied electric fields. Therefore, it has been necessary to limit

the investigation to a few cases which appear to be interesting and use-

ful for future work.

When two uncharged drops fall in a field free space, only gravity

and the drag force of the viscous medium influence their trajectories

and, consequently, the collision efficiency. Figure (4-1) shows how this

collision efficiency varies for drops of 25 to 70 microns paired with

droplets of 5, 7.5, 10, 12.5, 15, and 20 microns. The collision efficiency

goes to zero as the size of the droplet approaches the size of the drop

since the relative velocity between the pair approaches zero. In general,

for a droplet of a given size the collision efficiency increases as the

size of the drop increases since it is ,nore difficult to move the droplets

with greater mass around the drop with only a hydrodynamic flow of the air.

4.2 With an Applied Electric Field

The collision efficiencies for both horizontal and vertical electric

fields are shown in Figures 4-2, ;-3, and 4-4. The increase in the

collision efficiency due to an applied elcctric field is a re3ult of an

induced nonuniform charge distribution on the surface of the two drops.

The interaction of the two charge distributions can either be attractive

or repulsive depending on the orientation of the applied field and the

relative position of thef drops If only the dipole interaction is

43
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Figure 4-2 Collision efficiency curves for a 30 micron drop with a 5, 10, and

12 micron droplet.
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Figu~re 4~-3 Collision efficiency curves for a 40 micron drop with a 5, 10, and 15
micron t~roplet,



47

1.0

VERTICAL ELECTRIC FIELD

0.8

0

1.0

'4.'I

0.8 HOIOTL EETI FID

.. j 0.6 a 00

0.44
0.2 a -0

0100 200 400 600 1000 2000 4000
ELECTRIC FIELD, E. VOLTS PER CENTIMETER

Figure 1-4 Collisionr efficiency curves for a 50 micron drop with a 5, 10, anid 1~5micron dropl~t.
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considered, the regions of attraction and repulsion can be deten,-ined as

illustrated by Lindblad and Semonin (1963).

The trajectories for the 30 micron drop and 5 micron droplet are

shown in Figure 4-5. The effect of a region of repulsion about the y-

axis is illustrated for the case of vertically applied electric fields.

The initial trajectory of the droplet is toward the drop but it changes

its direction of travel after entering this region of repulsion. The

horizontally applied electric fields have a region of attraction about

the y-axis and result in pulling the droplets into the back side of the

drop for certain initial conditions.

It is observed from Figures 4-2, 4-3, and 4-4 that the horizontally

applied electric fields produce the largest Increase in collision

efficiencies and it is greatest for the 30 and 5 micron pair of drops.

A horizontal electric field of 3600 volts per centimeter increases the

collision efficiency of a 30 and 5 micron pair by a factor of 34.5 com-

pared to 5.6 for the 40 and 5 micron pair and 5.0 for the 50 and 5 micron

pair. Thus, the collision efficiency curves flatten as the collector

drop increases in size. This is due to the large difference between the

relative velocities of the drop and droplet which does not allow a

sufficient time for the electrical force to attract the pair together.

The effect of the orientation of the applied electric field can he

seen in Figurcs 4-6 and 4-7 which show the change in the collision

efficiency for various pairs of drops as a function of the angle :,

between the electric field, E, and the x-axis. The angle " is measured

positively in the counter-clockwise direction. The largest collision
4.

I
I



49

f VERTICAL ELECTRC FIELD -i,

3600 /cm 20

~5 .4 -3

DRoP RADII

!HOOZONTAL ELECTRI IELDio
3600 V/cm

DROP RAOD II-k.

VERTICAL ELECTRIC FIELD. Y
2100 Vm 20

.20

DROP RAD..

H1ORIZONTAL ELECTRIC FIELD.

2100 V(/cm.0

- 10

DROP RADII 2

ELECTR'C FIELD -

ZEROL20

20

DROP RADII

Figure -1-5 Tra.]ectorit.s f(ur a 31) micron drtp and f r-, cron r•plelt.



C-OWLi-S/ON EPFFICIEVCy E-C

0 P

08-

0 o

0) C
00 8=00

rn

rn



COLLISION EFFICIENCY, E C
04__ _ _ _ _ _ _ _ _b ýo 0

F- I~ tI ) r

IIl I
00

0 0

C* C)

S00

00

~' I

0



52

efficiencies occur approximately in the range 500 <13 <1300 and the lowest

collision efficiency for 0 approximately equal to 420 and 1380. The

maximum collision efficiency occurs for 0 eqal to 900 (a horizontally

applied electric field).

4C3 With a Net tiectric Char9e

The charge on the drop was arbitrarily selected to always be positive

min the only eritleal conditions were the charge magnitudes and whether

or not the two droplets had alike or opposite charges. Also, since there

was an infinite number of possible combinations of charges to be con-

sidered on the two droplets, it was necessary to set a ratio of charge

between the pairs of droplets. Gunn (1949) obtained same measurements

of the charge on cloud droplets which indicated that the net charge

varied approximately as the square of the radii of the droplets. Therefore,

for this work the ratio of the charge on a pair of droplets was taken as

the ratio of the surface area of the two droplets.

With these two conditions on the charges, the collision efficiencies

of drops of 30, 40, a-id 50 microns paired with droplets of 5 and 10

microns are shown in Figures 4-8, 4-9, 4-10, and 4-11. As would be

expected for charges of the same sign, which usually result in a

repulsive electrostatic force between the droplets, the collision efficiency

does not change appreciably until the charge on the droplet is greater
-17

than I x 10 coulombs, but decreases to zero for a charge between 1
-16

and 5 x 10 coulombs. The collision efficiency of the 10 micron

droplet is almost constant until it has a charge greater than 1 x 1016

coulombs, then it decreases to zero for a charge between 2 and 5 x 101

coulombs.
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3Figure 4-8 and 4-9 collision efficiency curves for a 5 (above) and 10 (below) micron

5 droplet with a 30. 40, and 50 micron drop.
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Figure 4-10 and 4-11 Collision efficiency curves for a 5 (above) and 10 (below)

mlicr droplet with a 30, 40, and 50 micron drop.
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For charges of the opp-'site sign on the droplets, the collision

efficiency increases as the magnitudes of the charges are increased

since the electrostatic force is attractive. There is no appreciable

change in the collision efficiency of the 5 micron droplet until it has
-16

a magnitude of charge greater than 10 coulombs, then it increases

very rapidly. But for the 10 mic-ron droplet, the collision efficienc./
-15

remaias almost constant until its charge exceeds 1 x 10 coulombs,

then its collision efficiency increases very sharpely.

"4.4 With Both an Applied Electric Field and an Electric Charge-

As in the case of the drops in a region of an applied field, the

sign of charge on the dropwas selected to a'ways be positive and the

ratio of the charge for a Zgtir of drops was selected as proportional to

the ratio of the areas of the two drops. Since only fields of either

0 or 180 orientations are reported here, it is easy to show that all

combinations can be determined with this selection of the sign of charge

on the drop. For example, if both drops had negative charge with the

applied field at 00, then this would be the same condition as when both

drops had positive charge but the same applied field had an orientation

of 1800. Therefore only four separate combinations of field orientation

and the sign of the charge on the droplet need be considered for only

vertically applied fields.

Figures 4-12, 4-13, 4-14, and 4-15 show the family of curves for

the collision efficiencies for a 30 and 5 micron pair of drops. For
-18

the magnitudes of the charge on the droplet of the order of 10

coulombs, the collision efficiency is the same as for only an applied

electric field. The same is true for the 40 and 5 microi, pair shown in
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Figures 4-16, 4-1l, 4-18, and 4-19 and for the 50 and 5 micron pair shown

in Figures 4-20, 4-21, 4-22, 4-23. The collision efficiencies are less

1for the 40 and 5 micron and the 50 and 5 micron pairs as expected from

section 4.2.

For the case of positive charge on the droplet, the collision

efficiency is foznd to increase with an increase in the electric field

and with an increase in the electric charges as shown in Figures 4-12,

4-13, 4-16, 4-17, 4-20, and 4-21. As was noted in paragraph 4.3, with

no applied field the collision efficiency goes to zero for a sufficiently

large electric charge. In contrast, an applied electric field can pre-

vent this decrease in the collision efficiency. This is an important

result, since even in a cloud of positively charged droplets the collision

efficiency can still be quite high if external electric fields are present.

With a negative charge on the droplet in a field-free region, the

collision efficiency increases very rapidly with an increase in the

charge as shown by the zero field curves in Figures 4-14, 4-15, 4-18,

4-19, 4-22, and 4-23. There is still an increase in the collision

efficiency when the orientation of the applied field is at 180 but

the rat* of increase is reduced. Since the relative velocity between

the drop pair has been increased the time required for the droplet to

pass the drop has been reduced resulting in less time for the attractive

electrostatic force to pull the pair of drops together.

-• .• s• ,'",• ,•l• --• ",.,,'•- " .. "I

I I I I I I i I i i i I
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ward (below). Qi = 641Q4
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CHiAPTER V

THEORELICAL ASPECTS OF THE COALESCENCE PROCESS

5.1 The Coalescence Process

The observation of the merging of two liquid surfaces immersed in

a continuous media is made difficult by several factors. The concept

of a boundary between a liquid and the continuous medium is complicated

by the motion of molecules continually entering and leaving a rather

nebulous transition region of the liquid. Random perturbations can

exist in the transition region and can be caused by vibrations due to

noise, non-uniform distribution of surface charge, impurities in the

liquid or they can bv periodic perturbations caused by vibrations of

sound at a given frequency

7o mAke the study of the coalescence of two liquid surfaces tractable,

the !ýuracces are regarded as a distinct boundary. A pressure difference

across the boundary of a liquid with a curved surface is caused by a

phenomenon called surface ten. on. Surface tension has the property of

trying to minimize the surface energy of the system. Therefore, it

follows that for two liquid surfaces to coalescences, an interaction must

develop such that the energy of a combined single surface is less than

the energy ofi s :ytem of two separate surfaces in proximity.

5.2 Trpped Gas Film Btrvi-n the Colliding Surfaces

As the two liquid surfaces approach each other, the continuous medium

:r which they are immersed must be forced out of the way so the two

surhaces Lan come close enough together to allow their coalescence. By

obaciving the coillsion of two liquid surfaces. it is found that the

surfaces deform into flat adjac.ýn!. surfaces untLl coalescence occurs.
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Slay ivtigatorn (Gillespie and Rideal, 1956; Ilton and Picknett, 1957;

Chr'ews and UNiD, IVO; and Pincen, 1963) have consideae various models

of drop. approchga sIL od liquid surface.

by us10g a cylindrical coordinate system, symmetry about the z-axis

and the plane a 0 stasts. The flattened surfaces are located at

z - + h and the velocities of the surfaces are given by V a - asdt

indicated in Figure $-I. An in~capnnible fluid of viscosity, V ,

is expelled radiaily from between the two surfaces at a velocity U(z, r).

It will be "imed that the flow is lanar, radial, and that inertial

effects are negligible. The distance fr the plane z - 0 to the drop

Surfaces is given by C. The radial velocity may be written as

u(z,r) a (C2 - za2)(r) (5-1)

where 4(r) is a function of r and it is to be determined. •quatiun (5-1)

implies a parabolic velocity profile with respect to z without slip at

the adjacent surfaces, i.e., U(z, r) = Oat z = +! . The volume flow

of the expelled fluid per unit time, Q, is

Q f 2fr u(z,r)dz (5-2)

By substituting (5-1) Into (5-2), we obtain

Q - 277r #(r)j (•2 - a2)d4 (5-3)

Integrating (5-3) yields

Q Fr *(r)E3 (5-4)
3
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Iriating the Chan"e in the volume flow per unit time to the volume

of the gas diSplacd by the approaching serfaces per unit time between

r and (r + dr), leeds to

-3N
-,Tr (09 2t)- 2yTrVdr (5-5).

Integrating (5-5) and_ *lvlng for * (r) yields j

4(r) - (5-6) I

By putting (5-6) into (5-1), we obtain

u(zr) - Wr ! _ (5-7)

by equting the mechanical work per unit time expended in moving the

two surfaces together at a velocity V. to the energy per unit tine dissi-

paetd by the viscosity of the expelled fluid, we obtain fr~ first principle

2 a 2
2FV v • (• f (Volume) - ,2nrdrdz (5-8)

where F is tho Zorce acti• g on the surfaces. Differentiating (5-7) with

respect to z gives

• -- '

s . 23Vrz (5-9)

I2

" j • • I
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by substituting (5-9) into (5-8) and integrating, it follows that

3V 2TV 3 dr (5-10)

since V is independent of t and r. Solving for V yields

v - dh 21' (5-li)

3TTv r dr

For this investigation, it is assumed that • is equal to h and is

independent of r for 0 < r < a which gives

a 3 4
E -dr W -A- (5-12)

Substituting (5-12) into (5-11) gives

dh - (5-13)

dt 3TTVa 4

Equation (5-10) gives the velocity at which each surface is moving.

This velocity is a function of the physical parameters of the system as

well as the force, F, acting to move the surfaces together. An interesting

case is produced if it is assumed that F is a constant, F , and that the0

radius of the deformation, a, is a constant.

Equation (5-13) can be rewritten as

"1ira 4 hl dh (5-14)/tdt= on

fo 8F 0 II h 3



which when integrated yields I

t4t a• (h6 - I2) (5-15
hhI

where tI is a enisure of the time required for the surfaces to move from1m

% to hi. 3or this case, the time of approach is directly proportional

to the radius of deformation but is inversely proportional to the force

puaslhft Me sut-faces together. Equation (5-15) is the same result

obtained by Reynolds (1886) for two parallel plates moving together in J
a viscous medium.

5.3 Effects C atL Electric Potential Difference

Since the deformation of the drops is assumed to be flat, the i
electrostatic force between these flat surfaces can be found by assuming

that the surfaces represent a circular parallel plate capacitor. Harnwell I
(1949) calculated such a force and determined it to be

T•a2 C 002

Fe 8h2  (5-16)

where o is the electric potential difference between the surfaces and e

is the permittivity of the gas trapped between the surfaces.

In addition to an electrostatic force, another force is acting to

move the surfaces together resulting from the initial momentum of the

liquid. For convenience, let the additional force be given by a constant

force per unit area, P 0 Since the net force on the flat surface is

o if
i
it

.I
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proportional to the square of its radius, the force can be expressed as

1a*P . Therefore, the total force bringing the liquid surfaces together
a

is given by

TI o2 2
F a - - .... + a(-17)

8h
2

It is also observed that the deformation of the approaching liquid

surfaces is not constant but varies as a function of time. The experi-

mental results given in Section 6.5 indicate that the radius of defor-

mation grows independently of the potential difference and can be

expressed as

a - 3.2 X 10.4 t3/8 (5-18)

Since the deformation of the drop is independent of the potential

difference, the neglecting of the interaction of the curved portion of

the drop surfaces is justified.

By substituting (5-17), and (5-18) into (5-13) and rearranging the

terms, we obtain

hddt ..-3.84X 8V 1 dh (5-19)

J" t 3/24 Jh 6 2
0 8 ht8.h+ Q

Integrating (5-19) yields

114 (.536XI7 2 2 + 8F0h12 "2

/4r 5 vFin 0) + in( (
1 2 - 2 2)]+ (F50h
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Solving for t gives I
1Ie b + too0 2 1 +'Fh

wbere t is the time, starting with the deformation of the surfaces,

required for the surface separation to change from 2h 0 to 21.

5.4 Stability of the Liquid Surfaces

Since the stability of the two approaching surfaces can be indicated

by the tine interval between the onset of the deformation and their

coalescence, tI in (5-21) is a meaaure of this stability if hI is the

position of the surfaces at coalescence. Coalescence itself is pro-

bably a randm process since the surfaces are not well defined and

pertu~rbations on the surfaces lead to a probability of coalescence for

any separation. However, equation (5-21) does indicate the general

influence of the various paraneters on the stability of this system.

Equation (5-21) indicates that the stability increases as the

fourth power of the viscosity of the gas trapped between the surfaces.

This type of dependence appears reasonable, since gases of higher vis-

cosity should be more difficult to squeeze from between the two surfaces.

However, the viscosity of a gas is not dependent on the pressure of the

gas until very low pressures are reached; therefore, for a oiderate

pressure the stability of the system w±ll be independent of this

pressure. Viscosity is dependent on temperature however; therefore,

the stability should be a function of the temperature.

ii
*! .•.-
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If the electrostatic force between the surfaces is mall compared

to the constant force, P , the limit of equation (5-21) as 0 0o o

becomes

(14I-8, 4 
4

tt . .... . -- -) (5-22)

Under this condition, the stability of the system varies as the inverse

of the fourth power of the constant force, P , compared to only its0

first power in (5-15), 'the difference being that the equation (5-15)

did not include any change in the deformation as the surfaces move

together.

The last case to consider is that in which the electrostatic force

is much larger than the constant force. The limit of equation (5-21)

as 0 * becomes
0

t (7 .68XI 0 "8v , ho 4
7 ' 8 ' [I n(N (5-23)

It appears that the stability is inversely proportional to the eighth

power of the potential difference, 0 ' However, the electrostatic force

is such that any perturbations on the surfaees will enhance this force

and amplify the perturbations. The growth of the perturbations will

iL.luence Th- rrtbabilltL of coalescence at any given separation. Th-

implication is that hI should al o be a function of 0 . Therefore,1 0I

is not necessarily inversely proportional to the eighth power of 0 .0

The prupiirionslity will depend on the variation of h1 with 0 0 As an

example. if hI varies as
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r K exp(-0o) (5-24)

0

It follows that

Fn 4 + in•X (5-25)

Substituting (5-25) into (5-23) yields

7,68xlO-8v 4 to K 4
tI F) • •)( (3-26)

and for large 00

4

S 68xlO 1 (5-27)

Of course, in this case tI is independent of 0 which does not appear to

be corzect. Therefore, it is left to experimentation to determine the

correct form of tI as is done in Section 6.2. By using the model of two

drops with flat surfaces, some speculation can be made about the variation

of hl with respect to the applied potential which is helpful since this

depandence is not easily measured.

I l l l i l l l I l l l l l l



CILAPTER V1

EXPERIMENTA> OBSERVATIONS OF THE COALESCENCE PROCESS

6.1 Experimental Technique

No satisfactory method has teen found to allow careful study of two

single coalescing drops freely faalling in air. Therefore, it has been

necessary to constrain the two drops in order to conduct an investigation.

In this study, drops were formed at the tips of two number-l8 hypodermic

needles which were etched so the tip would be flat. One needle was

mounted rigidly inside a sealed, electrically shielded chamber. The

second needle was mounted on pivots in such a way that the tip would

swing very close to the tip of the stationary needle, permitting a

collision between the drop pair. The velocity at which the drops

collided was varied by changing the length of the arc through which the

pendulum swung. The pressure of the air inside the chamber was varied

by means of a vacuum pump. The temperature and relative humidity were

measured with an electric hygrometer indicator.

A 16 mm Fastax camera was used to take high speed photographs of

the profile view of the two colliding drops. Since the one drop was

held stationary, the optical system ficr photography was greatly simplified.

Two dra carbon arc lamps were used to illuminate the drops. One lamp

was placed slightly to the right Pnd abeve the camera itself. This lamp

furnished the front lighting giving a b,Atter three-dimensional

appearance to the photographs. The second lamp was placed behind the

drops directly in line with th- camera lens. A mylar diffusion screen

was placed approximately 0.5 &-'n'timters behind the drops to reduce high-

lights. With this arrangeert, photographs at a speed of 14,000 frames

73



prr sec. were taken of the profile view of the collision and coalescence

of the two drops. The sequence of events for taking these photographs

was predetermined by timing clocks. The camera was started first to

allnw it to reach a high tIlt velocity before the pendulum was released

frw a solenoid operated clamp.

The potential between the two drops was varied by electrically

insulating the two needles and applying variable voltages between them.

A Keithley 600 A Electrometer was used to measure this potential differ-

ence. A precision 10 ohm resistor was placed in series with this circuit,

as shown in Figure 6-1. The current in the circuit was monitored by

measuring the voltage across this resistor witb one channel of a dual

bem Tektronix oscilloscope, type 551. The second channel ionitored the

potential applied between the two needles, and a Tektronix oscilloscope

camera model C-12 was used to record these quantities. The oscilloscope

was adjusted so the trace was triggered by the initiation of the current.

Since the circuit was normally open, only with the coalescence of the

two drops did any charge flow.

Two neon lamps were mounted in the Fastax camera in such a way that

their light was recorded along the extreme edges of the 16 millimeter

film. One lamp as used to record 1000 cycles per second timing pulses

which were of equal on and off duration. This provided a means to measure

the time between different events photographed a the film. The second

neon lamp was used to record the time of the initial flow of current in

the electrical circuit. The lamp was turned on by a thyratron tube

triggered by the initial current. A time delay of less than 20 microseconds
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was measured ft air triggering circuit. This procedure provided a

means to ueasure the time Interval between the initial current and

coalescence recorded on the film.

Measurements from the film were taken by the use of an analog-to-

digital converter. Scaling of distances was accomplished by accurately

measuring the diameter of the tip of a hypodermic needle and comparing

"this with Its measurement from the film. The collision velocity was

determined by measuring the approach of the two drop surfaces as a

function of the 1000 cycles per second timing marks along the edge of the

film. After the collision of the two drops, but before their coalescence,

the rate of deformation of the adjacent surfaces was determined by

measuring the height of the flattened region. At coalescence a transition

region between the drops was formed which has the appearance of a lens.

Photographs of both the flattening and the lens are shown in Figure 6-2.

The rate of growth of both the height and width of this lens was measured.

The initial appearance of this lens was taken as the beginning of the

coalescence process. The time between the visual contact of the drop

surfaces until appearance of the lens is defined as the coalescence

time. The time between the initial flow of charge and the initial appear-

ance of the lens is defined as the current time. The intervals of time

measured were easily determined within 2 frames of the film giving an

accuracy of + 150 microseconds.

To insure adequate current for reliable measurements, distilled water

with a mall amount of hydrochloric acid was used. This solution had a

pH = 1.9 and a conductivity c = 6 x 10-3 mhos/centimeter. Both drops had a

radius of approximately 2 millimeters. The voltage between the drops was
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Figure 6-2 Photographs showing the profile of two water drops before

collision, after collision, and after coalescence.

0
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varied between 0 to 10 volts d-c. Temperature and relative humidity

were approximtely 2SC and 50 percent respectively. A typical set of

photographs of the collision and coalescence are shown in Figure 6-3.

6.2 Effects of Electrostatic Forces on the Coalescence Process

A plot of the reciprocal of the coalescence time for two collision

velocities as a function of the applied voltage is shown in Fig. 6-4.

The curVes 0tWn are found by the method of least squares as discussed

in Wylie (1951). For potential less than 1 volt the spread in the data

incres"d and became emewhat randta. This range of voltage was not

Investigated and the curves are merely projected to 0 voltages. For

the range of 0-0.5 volts, a collision followed by a separation of the

two drops is easily obtained since the drops separate before the

minimum coalescence time. Photognphs of this separation are shown in

Fig. 6-5.

The relationship betw-en the applied voltage and the coalescence

time is determined frcs the experimental data by applying the method

of least squarn. First, the following relationship is assumed

• b
t - A b (6-1)

By taking the logarithm of (6-1), we obtain

log(t) a log(A) + b log(#o) (6-2)

Now, by using the logarithms of t aod 0 both log(A) and b are determined

by the method of least squares. It is found that b = - 1.0235 which

Indicates that an inverse relationship ahbiald exist. This result agrees

with that of Berg (1963).
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Fi-r~e 6-3 A sequence of phaotographs taken at 14,000 frames per second of
colliding &nd coalescing water drops with a potential difference
of 1 volt.
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Figure 6-4 does indicate that the coalescence time is inversely

ruiortioul to the applied voltage, but the slopes of the curves are

slightly different for different collision velocities. Therefore, the

coalncnce tine decreas" as the voltage is increased. For a collision

velocity of 14 centimeters per second, the coalescence time Is 0.266

aillioeonds when the potential difference is 10 volts as compared to

2A0 Mifzinods when the potential difference is I volt.

For the sordel of two drops approaching each other with a flat

deformation, ti t found to have the following limit for large 0o

n4 4

2 (5-23)
Coo

but as was suggested in section (5-4), ki may also be a function of 00

which mesan that equation (5-23) is not timplete. Since experimentally

it is found tUL t 1 is inversely proportional to 00, then it follows

from (5-23) that

r h0 4
L. rnh01 4 0 k4 (constant) (6-3)

for large 0. Therefore,

h exp(-k•0 1  (6-4)

ox
0

Nrcm (5-23). t can now be written s-9

4
7 68X10¾v I 4

0 (6-5)I

copare to 1

, n nl~0~ m |,.,..n-
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2.8810" (6-6)
0

determined from 2%4,. ;* -. •*. * , f.N.-g f,'r k 1,Y ecuating

(6-5) and (6-6) yielac

k . 07X O%km

For air k - .26

6.3 Effects of Pressure o.i the Cta16sc•r.- P:-oc,.ss

The coalescence ttzes fo'r P.r pr-ss9.-res of 190, 380, and 760

millimeters of mercury irside t!7e sci~.!, o.|q:•r zontaining the colliding

drops are given in Fig. 6-6. ," tc,-±,JPe, r6lrtive humidity, and

collision velocity are at-.eI !t0'C, -,0 p-O r c.,nt, and 14 centimeters

per second, respectively. TL rlhrt..&.'..>.i;s rcttw)÷:. the coalestenze

time and the appl.ed pea.•tial f,,r -:- r,-essures are deter-

mined by the method of lrP$st ,Peti'• ".-.*c..a .on r c!ffi.Aent, as

described by Parratt (19;iA. .,.r ýi.; ,t:t. tý-.. vtrn.c.J9 pressures is

0.822 for 190 millimotrjrs -o m, . 0 '3 :0,.* :iv30 Millimeters of

mercury, and 0.953 for 760 , l..met - f c• m.-ury. However, when the

data for the thres diff-'•r,.r--t s' -. 's1_!•r'd together, a

correlation coefficier.t o:! 0.4 .o wIA indicates a good

correlation of all the det A7 :-r-.:-, ,,f '.: . rfluer.:o of pressure

for the 2 millimeter drops e.xe.in.-i.

This result agr;ez wt•-, :i... " c.3 $¢cti:r• 5.4. The ard. e

used indicates that th, :.iv ,-, , ,.! cnalesrence tir." or. air

is that it is proport c.v'° -.k t- r ,-r ý5f t.e vlccosi.ty Cf thi:

air. However, the v)sI'.v •z g d-.x, % nh t . e..:: with moderato changeb

in pressure; ther.fcz,'. .,,.r `z •tL a'•lpl indepenient of pressure.
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6.4 Charge Flow Before Coalescence

A plot of the current time is given in Fig. 6-7. Since the current

is found to start before the apparent coalescence determined by the profile

view of the drops on the film, this current indicates the possibility

that charge is transferred between the drops before their coalescence.

Although the voltage applied between the surfaces is less than 10 volts

for a very small separation between the surfaces, the local electric

field can exceed the value that is normally required to initiate ioniza-

tion of the air. However, the electrons can not obtain enough kinetic

energy in this short distance to produce ionization of the air molecules

since the ionization potential of oxygen is 13.5 volts, nitrogen is 1445

volts and carbon dioxide is 14.4 volts. These ionization potentials are

greater than the 10 volts applied between the drops; therefore, a dis-

charge between the surfaces by ionization of the air is not likely. How-

ever, just before coalescence small perturbations of liquid on the sur-

faces may be pulled off due to the high electrostatic forces present and

they would carry a net charge. The charge carried by this transfer of

mass could account !or the indicated current before coalescence. Since

no current is observed for the case when the drops collide and separate,

this charge flow would contribute to the initiation of the coalescence

precess.

6.5 Rate of Growth of the Deformation

The rate at which the deformation of the colliding surfaces develop

is given by a plot in Fig 6-S of the height of the flattened area as

a function of the tine after the initial deformation. It is observed that
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the rate of growth of the deformation is common to all of the different

applied voltages until a lens is formed at the time of coalescence. The

relationship for the height of the deformation, 2a, is again determined

fre the eserinsuntal data by using the method of least squares and the

logrithas of A san t. This relationship is found to be

2. - 6AX104 xI "/8  (6-7)

The drops do not deviate from their original spherical shape until

the flattening of the adjacent surfaces begins. However, the height

of the flattened area at coalescence does decrease with an increase

in the potential difference since the coalescence time decreases.

The growth of the lens height after coalescence is more rapid than

the rate of increase of the height of the flattened area before coalescence.

Also, the growth rate of the lens height is greater for smaller voltages

than for larger voltages.

The rate of growth of the lens width is shown in Fig. G-9. This

rate of growth increases in a linear manner although the rate is less

for larger voltages than for maller ones.

if-
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1.0- 0.5 VOLTS
30 VOLTS "•
/0 VOLTS

-6

.4-
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TIME AFTER COALESCENCE , MILLISECONDS

Figure 6-9 A plot of the lense width ns a function -f t',%e after coelcscence.
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7.1 Collision ttftiiency of Drp Pairs

7.Am No flectrostatic Force

For the mathematical model of a pair of drops described in

Chapter III, it 1. found that for uncharged drops ranging in size from

5 to 70 sicrns falli-ng in a field free space the collision efficiency

increasee as the size of the drop increases for a fixed droplet size as i
illustrated in Figure 4-1. For-a 5 micron droplet, the collision

efficiency is zero when paired with a 25 micron drop or less but it In-

crea•s to 0.1838 when paired with a 70 micron drop- The collision

efficiency also increases as the size of the droplet increases for a fixed

drop size. For a 50 micron drop, the collision efficiency is 0.1338 when

paired with a 5 micron droplet but incrmases to 0.7676 when paired with a

20 micron droplet. This is an increase in the collision efficiency by a

factor of 5.74 and indicates that the collision efficiency of a drop falling

in a cloud of droplets will increase as drop grows in size. Therefore, even

though the collision efficiency of drops In the initial stages of warm j

clouds is small, it increases as the size of the drops in the cloud grows.

7.1b Zlectric Field Present

For a given pair of uncharged drops, their zollision i
efficiency increases with an applied ele'7tric fipld as shown in Figures

4-2, 4-3, and 4-4. It is found that horizontally oriented electric fields

produce a greater increase in zolliiion efficiencies than do vertically

90
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oriented fields. For a 5 micron droplet paired with a 30 micron drop,

a 3600 volt per centimeter field orierted vertically ticreasea the

collision efficiency by a factor of 22.1 compared to an increase of

34.5 for the same field oriented horizontally.

For a given drop size the increase in collision efficiency is less

for larger droplet sizes- With a horizontally applied field of 3600

volts per centimeter the collision efficiency for a 30 micron drop

paired with a 5 micron droplet increases by a factor of 34.5 compared

with 29.0 when paired with a 10 micron droplet.

For a given field strength, it is found ttat if the field is

oriented either at 42° or 1380 from the vertical, the collision

efficiency for a drop pair is a minimum where as the maximum collision

efficiency occurs for the horizontally applied field. When the drop

size is constant, the difference between the maximum and minimum collision

tfficiencles decreases as the droplet stze increaseZ. This is illustrated

in Figures 4-6 and 4-7.

7.1c Charged Drops

The collision effi~cien.y of pairs of charged drops in a

field free region decreasac fcr cha-bges cf the rame rign and increases

for charges of opposite sign. No nott:eable effect is observed on the

%~- 17
collision efficiency when the c!arg- (.- the droplet is less tlan 10

coulombs but its effezt be-ms' v'ry -vidý-t f r an increare of o,'e

order of magnitude of charge re is rb-,wn in Figures 4-8, 4-9, 4-10, and

4-11.



For charges of the same sign, the collision efficiency g•es to zero

for charge on the droplet greater than 10 coulombs while for charges

of the opposite sign, the collision efficiency exceeds 8.0 when the

charge cc the droplet is greater th0n 10- coulombs. This is an

Zepeted result, since the electrostatic force for sufficient charges _ 5

would be attractive or repulsive depending upon the signs of the charges

involved. Therefore, for a cloud of charged drops with alike signs, the

collision efficiency of the drops would be small compared to a cloud

"composed of charged drops with both signs.

7.2d Chaýr-d Drops in an Electric Field l

Only vertically oriented electric fields are reported here,

bt•a the collision efficiency of pairs of drops with changes of the same

sign can be increased to values above one. For the charges of opposite

*sia the collision efficiency can be decreased to zero as the magnitude

of charges is Increased. These results are illustrated in the Figures

4-12 through 4-23 and are the reverse of the results of Section 7.1c

where the drops were charged but no applied field was present. It is

indicated that clouds of drops with charges of the s,me sign can have

high collision efficiencies when correctly applied electric fields are

present. This is an important result since in clouds composed of charged

drops, region& exist where one sign of charge predominates and the

collision efficiency of the drops is small unless an electric field is

pre"nt, Then the collision efficiency of these drops can be increased

to values greater than one.

P
!
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7.2 (3oa1eseenc9 of Drop Pairs

7.2a Effects of an Electric Potertial Difference

The coaleocerce time for 2 millimeter drops is found to

vary as the inverse cf thae: p-tential -jifferance, 0., as given in Fig.0

6-5. For the model of two drops with flat deformations, the ratio of the

separation of the surfaces at coalescence, 2hl, to the separation at the

start of the deformation, 2h 0 iv given by
0

h exp(-k €7o/4) 
(6-4)

0

where k is a constant. This dependence arises from the influence of the

electrostatic force on the growth of perturbation on the surfaces of the

liouid which changes the probatilItv of crin.!scences at any given separation.

7.2b Effects of Ccll±Otmt Velozty-

For a decrease in the cz!Ision velocity of the approaching

drops, the coaleszenzce tite will Prersase •, show:n in Figure 6-5. Since

the initial momentum of the liquid drors Is greater for higher collision

velocities. Consider±rg tho model of twc drors with flat deformations,

the coalescence time is• ?n0t-s to be inverz:-y prcportional to the fourth

power of the inertia fcr-? At.-7 'elvzt:,tetic fcrce is present. This

inertial force is very izprr-tfr: tn t%- coalescence process, since it ie

necessary for the cal~sc•-.e o. at.hargid 6rcps.

7.2c Effects cf A_'r Pr-cs::ý-

Tbe c~alrc•-tc• tni of tw3 drops 2 'illimeters in radius

is found to be ind@ip--rdEt rf the p:-ss,.re ef the air in th- continuous

medium as illustrated in Fig. 6-7. This is in ag-rmert with the rzsuita

from u1sing the model ,f tw,- !i'-r, th flat drfcr-a:to- since the zelcilatqd



coaineS ce time depeni. only on the viscosity of the air which if

indepndent of pressure. This is a useful verification of the result

from the model since this justifies neglecting any small variation in

pressure, of the continuous medium when considering coalescence.

7.2d Charge Flow Before Coalescence *1

The acurrnt in the external network of the two drops

"mpended on hypodermic needles Is found to start a fraction of a tailli j

"second before any visible coalepcence occurs as shown in Figure 6-8.

However, the potential difference between the surfaces is less than 10

volts which is too low to cause the air to ionize even if the electric

field between the surfaces exceeds the normal ionization value. Since

oxygen, which has the lowest ionization potential of any air constituent,

has on ionization potential of 12.5 volts, the electrons can not obtain

enough energy to ionize the air. Therefore, it appears that perhaps

small amounts of charged liquid are removed from the surfaces immediately

before their coalescence carrying charge ocro:Fn the air gap. This

phenomenon could be the result of perturbationp on the liquid surfaces

and would be the initiation of the coalescence process, since no current

was ever observed for any case where the droplcots separated.

7.2e Rate of Growth of Deformation

The initial rate cf deformation of the colliding surfaces

is fo*And to be independent of the potential applied between the drops.

The radius, a, of the flatten deformation is found to vary at

a 3 3.2 X 10"4 t3/8 (6-6
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This result is h-elpful s iot ±t s tsflir dprtving a r~rktng model

for two colliding rpuard S-t twplie~s that ttýýe -lectrostattc t-rcet

'sitside the deo:?eirgi-:r can b-nglce sin~ce it does not aid in

the growth of the dfraim

After -c-aleszerca, the heq-ghLt of thi eorain nrasss a

greate-r rate than before and thýe widta :ýf the lens gý,cns linearly with

t ime. If this i-r~ear relatic-rslip tolls from the beginning of coalescence,

theni it can be used to accurateýly dee-iethe time of coalescence.

The time of ccalescert.e fjn.-d hY this; rrnethol Is in good agreertent, wilth

thez visible evidence of za6er&fz,-ro a ;rofile- v--Irew of the colliding

drops .

7.3 Recoamendatistýs f-or Furthar &r-searih

'20 date, neither ths thvrt~Izot-ls nor th-e laboratory

experiments have beeýn comý'>tr-!y odei--ate in studying the interaction

of drops in p~roximity. ?erthirr wrirk tes,?! on prellimnary results

already obtained is esse;rtla' In evPIa2-1intg the complete behavior of

aggregations of drcps. ?ýher-tcifrr et tD-- result's reported in the

preiou Cator, frthr rs~a*ThrE~cnrntenc~ed is as follows:

1) The c-ollisi'>r eftciz'c.sr-crtt Z! 'n ch-apter IV should be used

t- compujte thti gr-owth rpt?: ' .1-ling through a. cloud of dro~plets.

2) Laboratory exprýw-t s"t: ei-sf-gred and implt'mcnted to ob-tain

m(r4ý accwa*za ea12m.?,f5<z-irvratc and the collision effi-

Cle-r.cleS of r.x s~z ~ 'r : ~z'sredi-wr.

3) The thoetT.PC c' - h ctr of two drops whichn collide

r-nd co~al,ýsoýe sts '11-1 ho 2cr. t-n j t Sn ot a:z tt: al :rpm-ts-trs andI

Cfl2 rrc
2'Va r-. 0 *.' .- a
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Two additional parmeters to be included should be the effect of relative

htumdity of the surrounding oedium and the influence of the evaporation A

of liquid from the surfaces of the drops. One possible configuration of

the dtonmation should be such that a gS bubble is trappeo tbtween the

adjacent surfaces reversing the curvature of the drop surfaces.

5) The v*amureiuits of coalIecence tines and the rate of growth of

detonation of aillinetr sze drops shafld be eatendd to include

a wider range of collision velocities, different humidities, different

temperatures, andifUfIZrent liquidis.

6) Labw&aty experiments shot-d be designed and implimented to obtain

meaents on the coalescence of Mtcron size drops. This study should

include the effects of electric field, charge, collision velocity,

relative huirdity, temperature, and viscosity of the medium for a wide

range of micron size drops.
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